Tag Archives: irish railway

UTA MED Three-Car Diesel Train

Jeremy Fletcher

 

It is not intended as a direct insult to the steam junkies, but my own personal preference is for old railcars etc. which have been neglected or ignored in the past by the mainstream as a lower form of life compared to  steam locos, which they are not! Only now are they receiving more attention and appreciation, but still individual prototypes only attract modellers’ attention after all have been scrapped and proper measurements are hard to get! I previously made a model of the long gone GNR railcar ‘A’ on which I wrote up an article for New Irish Lines, May 2005. I have since made a model of the UTA MED diesel train. I made my model of a three-car MED set using brass etchings which I got made by Allen Doherty (Worsley Works). The etching sets are a basis for scratch building rather than what are normally sold as a kit: they just include body sides, ends and floors. Other parts such as roof and bogies, have to be obtained elsewhere or made by the modeller. I made the coaches by building them up directly from the etchings rather than doing “overlays” on existing available coach bodies.   Suitable ‘donor’ coaches would be extremely difficult to get where I live!.   Building directly from etchings is certainly a much more laborious way of doing it as I found out! There is much more soldering and it  requires care to avoid excessive warping and distortion.

Worsley Works three-car MED set

Worsley Works three-car MED set

Worsley Works three-car MED set

Worsley Works three-car MED set

Worsley Works three-car MED set

Worsley Works three-car MED set

The Worsley Works MED coach sides came in individual between-doors sections, aligned in their correct relative positions only by the fret sheets and separated by the spaces for the sliding doors.  It was therefore necessary to attach these together by soldering in the separate sliding door etches to produce complete one-piece body sides before they are separated from the frets to maintain the alignments.  It is also easiest to curve the body sides to the correct profile using the coach ends as templates before removing them from the frets.  This is made easier by first bending the sides and the sliding doors separately before soldering the doors in place.  I added narrow brass strips between the sides and the door edges to give more “depth” to the openings.   The coach sides were very flexible and prone to buckling, so I made interior partitions from shim brass and added brass cant rail strips along inside the top edges to add rigidity. I made the coach roofs from thin styrene sheet (Evergreen) which I bent to match the profile of the coach end etches.  Working with styrene sheet has its own fun aspects as it tends to warp when joined with liquid cement! I made the cab ends by filing from styrene.   Much filing and fiddling were required! I used the etched brass floor sheets provided.  As they are very thin and flexible I reinforced them by soldering on pieces of discarded brass code 100 rail. 

I powered the MED set by means of small flat can motors with flywheels, one under each power car, hidden by the under floor/engine details, driving by flexible shafts to small homemade final drive gearboxes which ride on the inner axles of the bogies.  This gives four driven axles out of a total of twelve, with the problems of traction tyres!. I used Comet LMS bogies which I modified to give insulated sides, with insulated half stub axles (Athearn style) to give current pick up on axles.   All axles pick up.  I used Northwest Short Line nickel silver wheels, which stay clean and give good pick up, and the MED set runs smoothly.   I used Markits coach buffers and Ratio corridor connections. I made basic interior seats from styrene as the coach interiors are very visible through the many windows. The MED train runs fairly well on ordinary DC, but  I do not know how well it would run on DCC.

2 Comments

Filed under Modelling

Getting Started On Soldering: The TDR Three-Plank Wagon Kit

Paul Titmuss

 

It is evident from discussion that there are a number of modellers who want to progress to brass and nickel silver kits, but are loathe to make the jump because there seems to be nothing for the ‘beginner’ to try their soldering skills with first. I was at this stage once and still find soldering outside my ‘comfort zone’, but am becoming more skilled and increasingly confident, though I don’t profess to be an expert. The Tralee & Dingle three-plank wagon, available from Worsley Works is, I believe, a good starting point. It is low cost (£4.50 + £1.50 P&P), can be used for either 009 or 00n3, and if you bottle out can be stuck together with glue (I have built a wagon using epoxy resin). It is designed to fit the Parkside Dundas Tralee & Dingle van chassis. I am attempting to build Annascaul Station on the Tralee & Dingle Light Railway and whilst there is a lot of stock available from model manufacturers several key items are not catered for, the three-plank wagon being one of them. With the help of published and unpublished photographs (generously loaned by David Rowlands) I drew diagrams for the wagon and sent them to Allen Doherty at Worsley Works, who used them to  create the necessary brass etches for the kit. The best published photograph of a three plank wagon (and one I relied upon heavily in the diagrams) can be found in The Tralee & Dingle Railway by David Rowlands, published by Bradford Barton, p75. By the time of closure each of the remaining wagons had been reconstructed so there were differences between them.

Photo #1: This shows the etch, constructed wagon body and the completed wagon on Parkside Dundas T&D van chassis.

Photo #1: This shows the etch, constructed wagon body and the completed wagon on Parkside Dundas T&D van chassis.

Photo #2: The set up used for soldering. An Antex 25W soldering iron and stand, flux and 145° solder. I do not usually go to the extreme of soldering outside, but on a nice day its quite pleasant, but dont drop any parts!

Photo #2: The set up used for soldering. An Antex 25W soldering iron and stand, flux and 145° solder. I do not usually go to the extreme of soldering outside, but on a nice day it's quite pleasant, but don't drop any parts!

Photo#3: The first job is to tap in the bolt heads. I do this with a pin whilst the brass etch is resting on a piece of hardboard. A light tap is enough. When this is done flux and solder (tin) the insides of both sides and ends. When completed cut the parts out of the fret and clean up the rough edges with a file.

Photo#3: The first job is to tap in the bolt heads. I do this with a pin whilst the brass etch is resting on a piece of hardboard. A light tap is enough. When this is done flux and solder (tin) the insides of both sides and ends. When completed cut the parts out of the fret and clean up the rough edges with a file.

Photo #4: Line up the pieces, ensuring that the outside overlaps the inside section equally at both ends. I have recently acquired some little clips to help. The work is then held in a vice.

Photo #4: Line up the pieces, ensuring that the outside overlaps the inside section equally at both ends. I have recently acquired some little clips to help. The work is then held in a vice.

Photo #5: Flux is applied to the top edge and then solder run along the joint.

Photo #5: Flux is applied to the top edge and then solder run along the joint.

Photo #6: When happy with the join put the side or end on the work surface, inner side up and then apply heat from the soldering iron to help the tinned sides make a better bond. There should be a little solder on the tip of the iron to help with the transfer of heat.

Photo #6: When happy with the join put the side or end on the work surface, inner side up and then apply heat from the soldering iron to help the tinned sides make a better bond. There should be a little solder on the tip of the iron to help with the transfer of heat.

Photo #7: To join a side end place upside down on the work surface. The end piece goes inside the wagon side. Make sure the joint is fluxed. I hold the work in place with Blu-tack®. I also used some fine graph paper to help get the pieces square. The join between the two parts can then be soldered.

Photo #7: To join a side end place upside down on the work surface. The end piece goes inside the wagon side. Make sure the joint is fluxed. I hold the work in place with Blu-tack®. I also used some fine graph paper to help get the pieces square. The join between the two parts can then be soldered.

Photo #8: When both pairs of sides and ends have been joined I then solder up the remaining corners an the basic body shell is complete. You may wish to trial fit the chassis floor at this stage (see photo #11).

Photo #8: When both pairs of sides and ends have been joined I then solder up the remaining corners an the basic body shell is complete. You may wish to trial fit the chassis floor at this stage (see photo #11).

Photo #9: The strapping can then be applied. These pieces can be easily fixed using epoxy resin. If you attempt to solder the straps make sure they are tinned on the fret first, and would be an idea to apply the straps to the work before the sides are built up. The tall end straps are raised from the body and I glued these to strips of plastic card, and then these in turn were glued to the wagon ends.

Photo #9: The strapping can then be applied. These pieces can be easily fixed using epoxy resin. If you attempt to solder the straps make sure they are tinned on the fret first, and would be an idea to apply the straps to the work before the sides are built up. The tall end straps are raised from the body and I glued these to strips of plastic card, and then these in turn were glued to the wagon ends.

Photo #10: The corner plates need to careful bending in a vice. I held them between two rulers and pressed the edge over with a small piece of 1 x 1 timber. On the actual wagon the short edge went along the side so there is no need to panic if the two edges are not the same length. To complete the door straps lengthen the hinge gap by cutting into the etch. Place a fine piece of wire (not supplied) on the edge of the board (with Sellotape®) and press to shape. If the wire has been tinned and the job fluxed this is an easy soldering job. Cut off spare wire and etch before fixing in place. The door straps should just overlap the edges for the door sides.

Photo #10: The corner plates need careful bending in a vice. I held them between two rulers and pressed the edge over with a small piece of 1" x 1" timber. On the actual wagon the short edge went along the side so there is no need to panic if the two edges are not the same length. To complete the door straps lengthen the hinge gap by cutting into the etch. Place a fine piece of wire (not supplied) on the edge of the board (with Sellotape®) and press to shape. If the wire has been tinned and the job fluxed this is an easy soldering job. Cut off spare wire and etch before fixing in place. The door straps should just overlap the edges for the door sides.

Photo #11: The Parkside Dundas chassis can be made up. The floor needs to be carefully sanded to size, a tad off each end (including the sole bars) and a little more off the sides (circa 0.25mm each side) so that the body fits the floor (it might be an idea to fit this before the strapping is applied as a dry run). Dont get too carried away as it is easy to remove too much floor. Next the body is glued to the floor. Vacuum pipes need to be sourced (or those that come with the chassis can be used) plus couplings of choice added to complete construction. It is best to give the brass a coat of etched brass primer before painting and weathering to taste. Hopefully, you have now completed a first successful taste of soldered kit construction. Do remember that if you bottle out with the soldering then the kit can be glued together, so it wont be wasted.

Photo #11: The Parkside Dundas chassis can be made up. The floor needs to be carefully sanded to size, a tad off each end (including the sole bars) and a little more off the sides (circa 0.25mm each side) so that the body fits the floor (it might be an idea to fit this before the strapping is applied as a 'dry run'). Don't get too carried away as it is easy to remove too much floor. Next the body is glued to the floor. Vacuum pipes need to be sourced (or those that come with the chassis can be used) plus couplings of choice added to complete construction. It is best to give the brass a coat of etched brass primer before painting and weathering to taste. Hopefully, you have now completed a first successful taste of soldered kit construction. Do remember that if you bottle out with the soldering then the kit can be glued together, so it won't be wasted.

Acknowledgements:
Thanks to David Rowlands for the loan of photographs, Allen Doherty for the preparation of etches and Simon Starr for exchange of ideas.

Addendum:
If anyone has already purchased one (or more) of the three-plank wagon kits there was an error with the original production etch. The right hand door straps are now available on receipt of an SAE from Worsley Works. My third wagon was completed with these.

2 Comments

Filed under Modelling

Building BCDR Diesel No. 2

Denis Bates

 

No. 2 at Ballynahinch (Denis Bates Collection)
No. 2 at Ballynahinch (Denis Bates Collection)
No. 2 at Ballynahinch (Denis Bates Collection)
No. 2 at Ballynahinch (Denis Bates Collection)

When travelling from Dundrum to Belfast in the 1940s, a journey I often did, one of the sights on the journey was of the Ballynahinch branch train. Although sometimes the branch engine was 2-4-0 No.6, more often it was No.2, the Harland and Wolff diesel electric loco of 1933. Looking like a Co, it was in fact a 1B: the front axle was un-powered, and the other two axles motored. Harland and Wolff tried, with a little success, to break into the diesel market in the 1930’s, supplying engines to the LMS. A diesel shunter was supplied to the NCC, and a Bo-Bo, No.28, to the BCDR.  No.2 (originally numbered D1) was their first diesel electric locomotive, and was described in some detail in The Locomotive (June 15th 1933) and The Oil Engine (May 1933) from which the general arrangement drawing is taken.  The engine was rated at 270hp, and could haul 200 tons up a gradient of 1:100 at 16mph. On the BCDR it spent most of its life on the Ballynahinch branch. As it could not provide steam heating, a set of carriages was modified to provide electric heating. On the closure of BCDR’s main line in 1950, it was sent, together with brake carriage, to provide a short lived service between Newcastle and Castlewellan. It travelled south on Sunday 14th January 1950, illustrated in RM Arnold’s book at Crossgar. I recorded it at Dundrum – it must have travelled via Downpatrick station rather than the Loop Line, as it was cab first at Crossgar, and bonnet first at Dundrum.. Eventually it was returned to Harland and Wolff, and was used by them as a shunter in the shipyards.

No. 2 in what appears to be mint condition (Denis Bates Collection)
No. 2 in what appears to be mint condition (Denis Bates Collection)
No. 2 at Dundrum (Denis Bates Collection)

No. 2 at Dundrum (Denis Bates Collection)

The Model: Chassis
When buying Athearn diesel parts for building my Turfburner model (New Irish Lines…), I measured a number of Athearn diesels. I found that the bogie wheelbases of loco PA-1 were the same as those for No.2. This led me to buy an extra bogie. In addition, a set of gears made by the Ernst Manufacturing Co, of Oregon (listed in Walther’s catalogue) enabled the gear reduction to be increased.
Chassis

Chassis

At the time of writing, this loco is not listed in the current Athearn listings, so may be out of production. As with the Turfburner, wheelsets were made up using the Athearn axle muffs, turning stub axles and wheel centres, in conjunction with P4 wheel rims supplied by Alan Gibson. A small Mashima motor and a turned flywheel were mounted on top of the bogie, driving the original Athearn worm wheel and hence the drive train. Leads from the motor were soldered to the chassis side frames, and off the mechanism went. For P4 standards, the centre axle cut outs were filed slightly high to allow the axle more vertical play. The rest of the chassis is composed of the dummy outside frames, buffer beams and footplate. The most distinctive features are the Isothermos axle boxes. These were turned on the lathe, and added to the spring units: I think I trawled through catalogues to find tender springs/axle boxes which seemed closest in appearance. Sprung buffers were again turned.

 

 

Body
Body

 

 

 

 

 

Body
Body

I originally thought to make the body myself, but eventually asked Joe Magill, who has made some beautiful models of Irish prototypes in both 4 and 7mm scales, to make it for me – so the striking appearance is his. The distinctive louvres were etched to order by Bill Bedford, to artwork that I drew (they now appear in his pricelist). The paintwork is again by Joe Magill.

So No.2 is ready to enter service, when I get some track laid. Baseboards have already been made, and at the moment the thoughts are of the Ardglass branch – either the very simple Ballynoe station, or Ardglass itself, with its turntable and extension to the quay. Ballynoe station still has its full complement of buildings; Ardglass in 2004 had the goods shed, and a very derelict but complete station building.

 

 

The Model: Body

 

 

9 Comments

Filed under Modelling

CIE Four-Wheeled Bulk Cement Wagons

Robert Drysdale

 

The four-wheeled cement wagons, or “bubbles” as they are popularly known, are iconic of the modernisation of Irish Railways in the 1960s.  They are continuously popular subjects for modelling, so in this article a few observations are offered with that use in mind.  One hundred and fifty of these wagons were constructed over a period of eight years and most, I guess, are still in service.  The batch numbers are as follows:

  • 25050 – 25069 (1964)
  • 25070 – 25094 (1965)
  • 25095 – 25099 (1967)
  • 25105 – 25119 (1967)
  • 25120 – 25139 (1970)
  • 25140 – 25199 (1972)

The sub-plot of the article is about what information can be extracted from the Worldwide Web.  With the advent of the web and the digital camera many excellent images have suddenly become publicly available representing an unparalleled information source.  Of course, lacking access to the prototype, a lot of “reverse engineering” is necessary to guess how things are.  A list of websites used is given at the end of this article: if the reader is not yet computer-literate then find an internet café, order a coffee and get started!  I started this work in order to gather information for creating a rake of cement bubbles.  The only drawing I had was the one which came with an MIR kit, which is quite good.  Then I started searching the web for photographs.  What became clear quite quickly was that although these wagons may seem to be standard, there are actually subtle differences which reflect the building batches and modifications carried out in service.  These details might seem a bit too trivial for most people, but I believe that a little variation adds considerably to the realism of a rake of standard wagons.  My notes on this aspect are as below.

Detail Variations
Solebars: it seems as though these wagons have been built with the stronger springs and spring-hangers of the later four-wheeled stock, presumably reflecting their load capacity of 20 or 21 tons.  There are many variations of lifting lugs within the class, which may be two, one or none per side and presumably not necessarily the same number on both sides.  Likewise the mounting plate for these lugs may be rectangular, notched or absent and in the latter case various stiffening ribs can be seen instead.

Buffers: two types can be seen on the photographs, both massive parallel items.  One (older?) type has a smaller base plate which fits inside the open channel section buffer beam.  Note that the buffer beam is arranged with the open channel outwards.  The larger buffer is attached to an additional plate welded across the webs of the open channel.  Whearas the larger buffer has a relatively plain housing, the smaller one is lumpy with a distal bulge on each side of the housing and a flat rectangle on the top surface next to the ram.

Axleguards: most of the axleguards are solid plate items, but some photographs show the earlier fabricated type with a triangular opening on each side of the spring.  This can be seen on other wagons of the same era.

Axleboxes: on a few photographs heavily bolted wing-plates can be seen on the side of the axleboxes, while most wagons have plain wings.  Earlier wagons had a plain dished end-cover whereas most of the photographs on the web show the Timken boxes with the characteristic triangular three-bolt end plate.

Unloading Valves: on most photographs, two small yellow-painted handles emerge from holes in the solebar, which control the outlet valves from the tank.  Although the little holes seem to be provided on both solebars, the handles appear on only one side.  I can see no convention as to which solebar the handles should be on, but there seems to be about equal numbers on left and right-handed examples.

Vacuum Cylinder Covers: the cylinders are located at one end of the wagon and protrude slightly above the chassis, necessitating a chequer-plate platform for safe walking over this area.  In a large number of examples this plate has been removed, exposing the vacuum cylinders and chassis, which poses an interesting challenge for the modeller.

Unloading Pipe: at the opposite end of the wagon from the brake system is the unloading pipework.  The main unloading pipe of 6″ diameter emerges from the decking at about 60° and is provided with a loose cover, which may be either cylindrical or rectangular.

It is debatable how much variation in these details can be seen in one rake of wagons.  New wagons would probably have entered service in very uniform condition but over time modifications would have been made and the various batches would have become mingled.

Colour
According to advice gleaned from the Irish Railway Modellers web group, the bulk cement wagons have had three liveries so far.  Initially they ran in a light-to-mid grey, then were repainted into CIE orange and finally many were given the Irish Cement ivory colour.  Of course since the cement is dumped into the top hatch via a loose hose a lot spills over the tank and ditto for the unloading platform.  Given some rain this cakes nicely and holds track dust providing a glorious spectrum of very off-white to brown colours, interspersed with patches of virgin white where the cake has flaked off.  Many tanks show a haze of light brown over the lower half of the tank suggesting track dirt and/or rust.  A competition for the most realistically painted and weathered cement bubble would be in order!

Operating Practice
We are told we should try to run our model railways realistically, so with that in mind it is worth examining the photographs for operational purposes.  I have read various opinions about how many wagons rakes consist of, namely 12 wagons per rake originally later increasing to 20.  Photographs of an unloading operation at Adelaide show the wagons arranged in pairs, i.e. with the unloading pipes towards each other.  Presumably this is to allow the unloading pipes to be transferred easily from one wagon to the second.  However, most photographs show a more irregular order, presumably after some shunting.  Despite the apparent complexity, the air unloading system allows unloading the wagon into a lorry-mounted tank, which must be equipped with a suitable air blower.  Thus a large unloading installation is unnecessary and cement can be delivered at a simple siding – see the example at Waterside, page 66 in Ulster Transport in Colour by Derek Young.

For completeness I should mention my understanding of how the unloading system works, based on the information available for BR’s Presflow wagons.  “Fluidised bed” is common in industry to make a heavy mass of powder behave like a fluid by pumping high pressure air through it.  The bottom of the cement tank is formed into two cones and it seems most likely that compressed air is injected into each via some sort of distributor ring (I’m guessing here) to fluidise the cement in the bottom of each cone.  When the valve on the bottom of a cone is opened, the cement flows out into the large diameter unloading pipe, which emerges up through the decking of the unloading platform and into the unloading hose of the terminal or truck.  The instructions for the Presflow state that the pipe-work must be purged with air before opening the cement valves in order to clear any water which has collected in the system, which seems wise.  Loading is via the large hatch on top of the tank, most likely by gravity and since this is not a closed system, spilllage occurs.

If any reader is able to shed more light on my observations I would be very glad to receive them on merlin-x@online.no.

 

Reference Websites For Photographs
onirishrailways2.fotopic.net/c948803.html
railsceneireland.fotopic.net/c1365051.html
irishrailciefreightandrollingstockpics.fotopic.net/c1494361.html

[We hope to have scale drawings of these characteristic vehicles in a future issue. Ed]

1 Comment

Filed under Prototype